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Abstract

In commutative algebra, the theory of Grébner bases enables one to compute
in any finitely generated algebra over a given computable field. For non-finitely
generated algebras however, other methods have to be pursued. For instance, it
follows from the Cohen structure theorem that standard bases of formal power
series ideals offer a similar prospect but for complete local equicharacteristic rings
whose residue field is computable. Using the language of rewriting theory, one
can characterise Grébner bases in terms of confluence of the induced rewriting
system. It has been shown, so far via purely algebraic tools, that an analogous
characterisation holds for standard bases with a generalised notion of conflu-
ence. Subsequently, that result is utilised to prove that two generalised confluence
properties, where one is actually in general strictly stronger than the other, are
actually equivalent in the context of formal power series. In the present paper,
we propose alternative proofs making use of tools purely from the new theory of
topological rewriting to recover both the characterisation of standard bases and
the equivalence between generalised confluence properties. The objective is to
extend the analogy between Grébner basis theory together with classical algebraic
rewriting theory and standard basis theory with topological rewriting theory.
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Introduction

In abstract algebra, one defines algebraic structures in terms of axiomatic properties
of operations. No reference is made to the nature of the elements of the underlying
set(s). Hence, among examples of associative commutative algebras over a field, say,
for instance, the field R of real numbers, one might consider simple examples, such as
the algebra of real numbers itself or the R-algebra of complex numbers, but one could
also look at more abstract and intricate sets of elements that can be equipped with
a real algebra structure, like, for example, the R-algebra of smooth functions on an
open subset of a differentiable manifold. As mathematicians, the ability to compute,
in the sense of making calculations based on the operations in an algebraic structure,
is often central in obtaining new results. Even more, physicists, engineers and other
applied scientists require to make effective computations to solve their problems. One
big question then arises: is it enough to make approximations of the desired result,
assuming it is possible to estimate how far off the approximation actually is from
the answer, or do we absolutely require an exact solution of the problem? The two
approaches have their own respective merit and which one is to be preferred strongly
depends on the application. Approximations are the objects of study in numerical
analysis. In this paper, we are concerned with computing exact solutions, even if they
might be just symbolic expressions; this is the domain of computer algebra in which
one implements algorithms on computers to perform effective symbolic computations
so it yields an exact answer.

Just as representation theory offers a way of computing in even the more abstract
groups by effectively looking at its elements as invertible matrices, that is, as a finite
two-dimensional array of elements of a given field, associative algebras over a field K
are always isomorphic to the quotient algebra of a free K-algebra modulo one of its
ideals. The advantage is that free algebras are combinatorial and syntactic objects
that we know how to effectively represent on paper or on a computer. Here, we are
concerned only with commutative algebras and, therefore, free K-algebras take the
form of the well-known polynomial algebras with coefficients in K. We can thus take
for granted: we know how to compute in polynomial algebras if we know how to
calculate in K. Now, our problem of computing in the starting associative algebra is not
completely solved, as we want to work in a quotient algebra of a polynomial algebra.
Thankfully, some powerful machinery to help us with that goal has been developed
during the second half of the last century, namely commutative Grobner bases. Their
first concrete formulation as we know them today is attributed to BUCHBERGER in
his PhD thesis [1]. Grébner bases and their generalisations actually have a multitude
of very useful applications, especially in commutative algebra and algebraic geometry
(see for instance [2, 3]).

The reason why polynomial algebras are of such importance is because of two
things: their syntactic nature and their universal property among other associative
commutative algebras, i.e. that property we mentioned about any algebra being iso-
morphic to a quotient of a polynomial algebra. However, consider a K-algebra A that
is not finitely generated, that is to say, there is no finite subset {1, -, z,} C A that
generates A as a K-algebra, i.e. such that the canonical morphism K[z, -+, z,] — A
is surjective. This means that for such an algebra A, we have to consider infinitely



many indeterminates in our polynomial algebra and, it turns out, many important
results from Grobner basis theory do not apply anymore. However, alternative tools
are available for certain classes of non-finitely generated K-algebras. Indeed, even
before BUCHBERGER, HIRONAKA had developed in [4, 5] the notion of standard basis
of an ideal of commutative formal power series when he was interested in the problem
of resolution of singularities in algebraic geometry (for more details, see [6, 7]). As
stated in Proposition 11, commutative formal power series with coefficients in K are
not finitely generated as K-algebras and therefore, standard bases are useful in that
case, where Grébner bases fail to help.

Now, the Cohen structure theorem originally proven in [8] gives us insight into a
certain class of rings that can be equipped with the structure of an algebra over an
appropriate field. We recall that result in Theorem 12. In that theorem, Statement 3
expresses the kind of universal property for commutative formal power series that
polynomial algebras enjoy but for the specific class of complete local equicharacteristic
Noetherian rings. Those rings actually contain a subfield K, which turns out to be
isomorphic to their so-called residue field, and, when seen as K-algebras, they are
isomorphic to a quotient of a commutative formal power series algebra in finitely many
indeterminates. Moreover, Statement 4 enables us to prove Proposition 17 which states
that even those complete local equicharacteristic Noetherian rings are not finitely
generated when considered as algebras over their residue field and, therefore, Grébner
bases are of no use. Among examples of complete local equicharacteristic Noetherian
rings, one can find commutative formal power series rings, and complete local Cohen-
Macaulay rings to name a few.

So far, we have given motivations for the notion of standard basis by comparing it
with Grébner bases. However, unlike for Grobner bases and so-called algebraic or linear
rewriting theory, there is a lack of literature on the subject of standard bases viewed
from rewriting theory. But first, what is rewriting theory? It is a language to formalise
the concept of sequences of computations. It originally comes from group theory in
order to solve decision problems and it then got adapted in computer science and, more
precisely, to fulfill the needs to formalise and unify certain models of computations
in computability theory as well as give explicit formal systems in logic. Rewriting
theory suffers from a lack of easily accessible literature on the topic if it were not
for the two standard references [9, 10]. Now, despite rewriting theory being originally
motivated by its use in group theory, logic, term rewriting and lambda-calculus, it
has proven to be exceptionally powerful at providing a language for the theory of
Grobner bases (see [11, 12]). In that context, a Grobner basis is characterised by the
so-called confluence property of the rewriting system it induces, which exactly means
that the system enjoys an underlying determinism. More precisely, this confluence
property states that, no matter what path of sequences of computation one chooses
to reduce the polynomial, one always reaches the same result, called the normal form
of the polynomial. Such normal forms can be used as canonical representatives of the
equivalence classes in the quotient algebra. This allows to keep our computations in
the polynomial algebra, where we know how to calculate, and, at each step, reducing
to normal form to get the corresponding equivalence class.



As we mentioned however, standard bases had so far not been investigated from
a rewriting-theoretic perspective, strictly speaking. Only recently in [13], CHENAVIER
used algebraic tools to characterise standard bases of commutative formal power series
with the notion of d-confluence, a generalisation of the classical confluence property.
The author also introduced a generalisation of the transitive reflexive closure of the
one-step reduction relation which is studied in classical rewriting theory. That gener-
alised relation, called the topological rewriting relation, depends on a topology on the
underlying set of the rewriting system and, therefore, that new theory is called topo-
logical rewriting theory. It provides a framework in which one can investigate more
efficiently rewriting systems which fail to be confluent or terminating in the classical
sense. This includes formal power series for the algebraists but also, infinitary term-
rewriting and infinitary lambda-calculus [14-16] for the computer scientists. However,
the generalised confluence property studied in infinitary 3 /A-term rewriting is differ-
ent syntactically from the J-confluence. We will call the former infinitary topological
confluence property and the latter finitary topological confluence. From the general
point of view of topological rewriting theory, it is shown in [17] that infinitary topo-
logical confluence is strictly stronger than finitary topological confluence. However,
the authors used the above rewriting-theoretic characterisation of standard bases in
terms of §-confluence to show that infinitary and finitary topological confluences are
actually equivalent in commutative formal power series.

The goal of the present paper consists in giving a more rewriting-theoretic approach
to standard bases of commutative formal power series than before presented in the
mentioned literature. We will prove by new and more elementary means the results
of [13] about the characterisation of standard bases in terms of finitary topological
confluence and of [17] about the equivalence between the notions of generalised con-
fluence. This will be part of the main contribution of this article stated among the
results of Theorem 49. That theorem states the properties that are analogous to the
Grobner basis theory but for standard bases. We will also prove in Theorem 48 that
the equivalence relation generated by the topological rewriting relation is exactly the
congruence relation modulo the ideal generated by the rewrite rules.

In Section 1, we will first introduce in Subsection 1.1 the notions of local rings,
complete local rings, complete local equicharacteristic Noetherian rings, then, in Sub-
section 1.2 we will present monomial orders, commutative formal power series, the
Cohen structure theorem and some of its consequences. In Section 2, we start by
recalling the basics of topological rewriting theory, then we give new results regard-
ing normal forms and some uniqueness properties and conclude Subsection 2.1 with
the definitions of infinitary and finitary topological confluences. In Subsection 2.2, we
study some notion of attractivity of normal forms formalised in the context of topo-
logical rewriting systems over a metric space. We follow by Subsection 2.3 in which we
prove that, under some previously defined assumptions, the finitary topological con-
fluence property implies the unique normal form property. Then, in Subsection 3.1,
we remind the reader about the reduction on formal power series that gives rise to
the topological rewriting system we want to study. In Subsection 3.2, we recall the
original language in which standard bases were characterised. In Subsection 3.3, we
prove a few useful lemmas and the fact that the congruence relation modulo the ideal



generated by the rewrite rules is exactly the equivalence relation generated by the
topological rewriting relation (with or without chains). Finally, we will conclude with
the main contribution of the paper: characterisations of standard bases in terms of
rewriting theory.

1 Preliminary notions

1.1 Complete local Noetherian rings

The basic object of interest for our purposes are the so-called local Tings. Those are the
basis of many modern theories on manifolds and schemes in differential and algebraic
geometries, as the main object of study in those cases can be viewed as a locally-
ringed space, that is to say, a topological space (with potentially additional properties)
together with a sheaf of rings (or algebras) such that the stalk above each point is a
local ring. Prime examples of those local rings as stalks are sets of germs of continuous,
differentiable, smooth, analytic, holomorphic, or rational functions on the base space
or topological manifold.

Definition 1 (Local ring) Let K be a commutative ring. If K admits a unique maximal
ideal, then K is said to be a local ring, where a maximal ideal is any ideal I of K such that
we have I # K and, for every ideal J of K, if I C J, then J = K.

If K is a local ring and m is a maximal ideal of K, we write (K, m) to express the
fact that K is a local ring with unique maximal ideal m. By well-known basic results
of commutative algebra, if (K, m) is a local ring, then the quotient ring x := K/m is
actually a field, since m is maximal. We call that field s the residue field of the local
ring (K, m). The topology on rings we are concerned with in our context is the I-adic
topology which is induced by an ideal I in the ring at study.

Definition 2 (I-adic topology) Let K be a commutative ring and I be one of its ideals. We
define the I-adic topology on K as the topology whose basis of open subsets is given by the
sets:

{az—i—[k‘xEK,k‘eN}.

Endowed with that I-adic topology, K is a topological ring.

In general, this topology is not metrisable. However, a consequence of the Artin-
Rees lemma [18] known as the Krull’s Intersection Theorem allows us to describe a
metric compatible with this topology when the ring is commutative Noetherian as well
as an integral domain or a local ring.

Proposition 3 Let K be a commutative Noetherian ring which is an integral domain or a
local ring. For any proper ideal I of K, the following map dj:
d[: K x K — RZO

1
(a,b) —  dy(a,b) = gsup {kEN[a—belF}’




with the convention that, if the set {k eN ) a—be Ik} is not bounded above, then the supre-

mum is equal to oo and, subsequently, 2~ °° = 0, defines a metric on K which is compatible
with the I-adic topology.

It is then natural to ask about the metric space completion of an I-adic topology
induced by a metric.

Definition 4 (I-adic completion) Let K be a commutative Noetherian ring and I an ideal
of K in such a way that (K, cj[) is a metric space. Then, the I-adic completion of K is the
metric space completion (K, dy) of (K, dj).

Remark 5 Actually, the I-adic completion need not be defined only for topological rings
which are also metric spaces but we restrict ourselves to that case here for simplicity.

Since K with the I-adic topology is a topological ring, by continuity of operations,
the I-adic completion K together with the topology induced by the metric dI is a
complete topological ring which contains K as a subring. Let us show that the I-adic
topology on K, where I is the ideal generated by I in K when I is viewed as a subset
of K, is the same as the topology induced by dr on K. First, recall that it can be
shown by induction that, for any r € N, we have I"” = KI". Now, it suffices to show
that, for any point = in any basic open subset U in one of the topologies, there exists
a basic open subset V' in the other topology such that x € V C U.

In one direction, let z € K and p € Ryg. Consider r the smallest integer such
that 27" < p. Let y € = + I” and take (zk)ren and (y)ren two Cauchy sequences
in K that represent x and y respectively in K. Hence, there exists ¢ € I" such
that limg_ oo zx — yx = a. But, by the reminder above, it follows that there exist
leEN, z21,--,2p € K and ai,---,ap € I" such that a = Zle Z;a;. Consider, for each
i € {1,---,£}, a Cauchy sequence (z;)ken in K that represents Z; in K. Tt follows

that:
¢

lim g 2 kQ; = hm T — Yk-

k—o0

It is clear that, for any k£ € N, the set {j € N‘Zi:l Zi ki € Ij} contains r by

construction. Hence, its supremum is well-defined and is greater than or equal to r.
Now, for k € N, we get:

dl(irk,yk) _ 27sup{j€N|wk*yk61j} _ d[(xk _ yk’o)’

¢ ¢
dr(zg,yx) < d;g <xk — Yk, Z zmai) +dr <Z Zi ki, 0) triangular inequality,

i=1 i=1
¢ _ , )
dr(wk,yr) < dp <Ik — Yk, Z Zi,k'ai> 49— sup{ieN| L, zipaicl’} by definition,
i=1



[
dr(@k,yx) < dp (Cﬂk — Yk, Z%,k%) +27" see above.
i=1

Finally, by making &k tend to infinity, we get:

£
d] (Iv y) = klingo d](fEk, Z/k) S kli)H;o dI (Ik — Yk, Z Z’i,ka”i> + 27T7
=1
di(z,y) <0+27",

di(z,y) < p.

Conversely, let = € K and r € N. Let us show that there exists p € R such that
every y € K satistying d(x,y) < pis in z+1". Consider p := 27", Let y € K be such
that d; (z,y) < p. Take (zk)ken and (yx)ken two Cauchy sequences in K representing
x and y respectively in K. Tt follows that there exists K, € Nsuch that, forall k > K,
we have czl(xk,yk) = dr(zk,yr) < p = 277, hence, sup {j € N|xk —yr € Ij} > 7.
This means that, for any k > K,, r € {j € N‘xk — Yk € Ij} and, thus, xx —yr € I".
Making k tend towards infinity, we obtain z — y € I", thus Yy Ex+ fr, as desired.

To understand the following definition, recall that, by Proposition 3, the m-adic
topology on a local ring (K, m) is metrisable by the metric d, defined in that
proposition.

Definition 6 (Complete local Noetherian ring) Let (K, m) be a local ring where K is Noethe-
rian. If (K, dm) is complete as a metric space, then we say that (K, m) is a complete local
Noetherian ring.

As a complete local Noetherian ring is not necessarily an integral domain (and
thus not a field), the characteristic of the ring can be something else than 0 or a prime
number. It turns out that it can also be a power of a prime number. However, we will
dismiss that possibility by considering only complete local Noetherian rings that have
the same characteristic as their residue field, which is thus necessarily 0 or prime.

Definition 7 (Equicharacteristic) Let (K, m) be a local ring and x := K/m its residue field.
If the characteristic of K is the same as the characteristic of x, then (K, m) is said to be
equicharacteristic.

Remark 8 For any local ring (K, m), being equicharacteristic is equivalent to containing a
subring which is actually a field. Some authors prefer to use that other statement and might
not even use the term equicharacteristic (for instance [19]).

It is a known result from [20] that, for an ideal I in a commutative ring K, the
ideals of K are topologically closed in the I-adic topology if, and only if, I is contained



in the so-called Jacobson radical, which in our context is just the intersection of all
maximal ideals of K. In particular, we have the following proposition.

Proposition 9 Any ideal in a local ring (K, m) where K is Noetherian is topologically closed
for the m-adic topology.

1.2 Formal power series and standard bases

Throughout this subsection, n is a fixed positive integer, x1, - - -, x,, are distinct indeter-
minates and K a (commutative) field of arbitrary characteristic. Denote by [21, - - -, 2]
(or [x] for short) the free commutative monoid generated by {z1,---, z,} (whose law
of composition is denoted multiplicatively by -), call elements of [x] monomials and
denote by 1 the empty monomial, i.e. the identity element of [x]. Elements of [x] are
of the form x* := z{*- - -xl» where p := (1, -, ) € N". In particular, we have the
identity 1 = x% = 29---29. Define the total degree of a monomial m := x* € [x] by

the formula deg(m) := || = p1 + -+ + fin.

Definition 10 (Monomial order) We call monomial order on [x] any total order < on [x]
such that, for all m, m1, ma € [x], if we have m1 < mg, then m - m1; < m - ma.

As any partial order, a monomial order < is uniquely determined by its associ-
ated strict order <. Therefore, we will use the term “monomial order” for < and <
interchangeably. Note how, for any monomial order < on [x], the opposite order <°P
is also a monomial order on [x]. A monomial order < on [x] is said to be admissible
if, for all m € [x], 1 < m. This is equivalent to saying that < is a well-order on [x].
Some authors [3] use the term global order for admissible monomial order and call
the opposite order of a global order a local order. We say that a monomial order < is
compatible with the degree if, for all m, mo € [x] such that deg(m;) is strictly smaller
than deg(ms), then necessarily m; < mso. An example of an admissible monomial
order compatible with the degree is the “degree-lexicographic order” (or “deglex” for
short). An admissible monomial order compatible with the degree is of order type w,
where w denotes as usual the first infinite ordinal.

Denote by K[z1, - - -, 2,,] (K[x] for short) the K-algebra of n-multivariate polynomi-
als with coefficients in K. By construction, any polynomial f € K[x] is a finite linear
combination of monomials in [x] with coefficients in K and, thus, it makes sense to
define, for any monomial m € [x], the scalar (f |m) called the coefficient in f associ-
ated to m. It follows that the set supp (f) := {m € [x]| (f | m) # 0}, called the support
of the polynomial f is finite and that any polynomial f can thus be represented by
the finite linear combination f =3 . s (f|m)m. The set K can be embedded
into K[x] by the morphism of algebras K 5 A — Al € K[x]| where, here, 1 is the
empty monomial. The image of K by that morphism is exactly the set of constant
polynomials and it is the complementary subspace in K[x] to the subspace given by
the ideal I(z1,---,2,) in K[x] generated by {x1,---,2,}. Denote that ideal by I(x)



for short and note how it follows that I(x) is a proper ideal of K[x] since 1 is a non-
zero constant polynomial. By Hilbert’s Basis Theorem, K[x] is Noetherian and, since
we assume K is a field, also an integral domain, we can conclude that the I(x)-adic
topology on the ring K[x] is metrisable. Denote the associated metric by § := dj(x)
defined in Proposition 3.

We define the topological ring of (commutative) formal power series in n indeter-
minates with coefficients in K as the I(x)-adic completion (see Definition 4) of (K[x], §)
and we denote it (K[[z1,- -, z,]],0) (or (K[[x]],d) for short). Since K is embedded into
the ring K[x| and K[x] into K[[x]], it follows that K[[x]] is actually a topological K-
algebra by defining the scalar multiplication as the formal power series multiplication
restricted to the subring identified with K. It is a well-known result that this definition
of K][[x]] coincides with the so-called “large algebra associated to the monoid [x]” of
BoURBAKI [21]: K[[x]] is thus defined as the set of functions from [x] to K, including
those whose support is infinite. In other words, an element f of K[[x]] can be repre-
sented as a, possibly infinite, linear combination of monomials in [x] with coefficients
in K by formally writing it as the sum of every monomial m in [x] preceded by its
associated coefficient, that is to say, the scalar f(m):

f= Z flm)m.

me[x]

Extending the notations for polynomials, we set (f |m) := f(m) the coefficient asso-
ciated to a monomial m € [x] in a formal power series f € K[[x]] as given by that
linear combination representation, as well as supp (f) := {m € [x] | (f|m) # 0} for a
formal power series f € K[[x]].

Now, since ¢ induces the I(x)-adic topology on K[[x]] when I(x) is viewed as an
ideal of K[[x]], we can give a somewhat more convenient definition of §:

R R p—— 1)

where val (h) is equal to the smallest degree of monomials in supp (h), for any non-zero
formal power series h € K[[x]] \ {0} or oo if h = 0.
Let us prove the following property.

Proposition 11 The algebra K[[x]] is not finitely generated as a K-algebra.

Proof First of all, recall that a commutative ring K is said to be Jacobson when every prime
ideal is the intersection of maximal ideals. If K is a field, then it is straightforwardly Jacobson.
By a general form of Hilbert’s Nullstellensatz [22], if K is a Jacobson ring then any finitely
generated K-algebra is also Jacobson. Let K be a field. Then any finitely generated K-algebra
K which turns out to be a local ring is of Krull dimension 0: indeed, let m be the unique
maximal ideal of K, then, since K is Jacobson, the only prime ideal is m. Now, if furthermore
K is an integral domain, that is to say, {0} is a prime ideal, then it is once again clear that
the latter is the unique maximal ideal, and thus K is a field. Hence, by contrapositive, let K



be a K-algebra which is local as a ring as well as an integral domain, then, if K is not a field,
it cannot be finitely generated as a K-algebra. Finally, it is known that K[[x]] is a K-algebra
and is local as a ring as well as an integral domain but not a field. O

Now, let us recall the Cohen Structure Theorem, originally proved by COHEN
in [8]. For our purposes on complete local equicharacteristic Noetherian rings, we will
reformulate the theorem from [19, AC IX.30, Paragraphe 4, Numéro 3, Théoreme 2]:

Theorem 12 Let (K, m) be a complete local equicharacteristic Noetherian ring. Let us denote
by k := K/m its residue field and by d the Krull dimension of K.

1. The ring K contains a subring K which maps isomorphically onto k through the

natural projection K — K/m = k and, therefore, is a field of same characteristic

as both k and K. Thus, K is a K-algebra. Such a field K is a called field of

representatives for (K, m) (or, as originally called by COHEN, coefficient field ).

The quotient m/m? is a vector space over K. Let m be its K-dimension.

3. There exists an ideal I of K[[x1,- -+, xy]] such that K and K[[z1,- -, z,]]/1 are
isomorphic as K-algebras.

4. There exists a sub-K-algebra Ky of K such that Ko is isomorphic to K[[z1, - - -, 24]]
and K is a finitely generated Ky-module.

5. If (K, m) is regular, i.e., if d = m, then the K-algebras K and K[[x1, -, z4]] are
isomorphic.

o

Let us now introduce standard bases of formal power series. In order to accomplish
that, we need to define the notions of leading monomials and leading coefficients.

Definition 13 Let < be an admissible monomial order on [x] and f € K][[x]] \ {0}. Define
the leading monomial of f for < as follows:

Im (f) := minsupp (f) € [x].

We then define the leading coefficient of f for < as lc(f) := (f|1lm (f)) € K.

Definition 14 (Standard basis) Let I be an ideal in K[[x]] and < be an admissible monomial
order. A standard basis of I for < is any set G C I \ {0} such that, for all f € I\ {0}, there
exist g € G and m € [x] that satisfy:

Im (f) = m - Im (g).

In the commutative setting that we study here, there always exists a finite standard
basis for any ideal of K[[x]] and any admissible monomial order.

It is known since HIRONAKA [4, 5] that, for a fixed ideal I in K[[x]] and a fixed
monomial order <, for any f € K[[x]], there exists a unique formal power series, let us
denote it here by r; € K[[x]], such that f =r; mod I and no monomial in supp (ry)
is a multiple of a leading monomial for < of a formal power series in I. That formal
power series 7¢ is called the Hironaka remainder of f for < modulo I. It will serves
as a canonical representative of the equivalence class of f modulo I. The purpose

10



of standard bases was primarily to compute effectively that Hironaka remainder. In
Subsection 3.3, we will show that Hironaka remainders are actually just the normal
forms of a topological rewriting system which satisfies a certain notion of confluence.

Here is a useful proposition which relates the degree of the leading monomial of the
difference of two formal power series for a certain monomial order with the distance
between the two formal power series.

Proposition 15 Let < be an admissible monomial order on [x] which is compatible with the
degree. Then, for all f,g € K[[x]] such that f # g, we have:

1
0£,9) = Gegimr=ay-

Proof Indeed, let h € K[[x]] \ {0}, since the monomial order < is admissible, the leading
monomial Im (k) is exactly the least (for <) monomial in the support supp (h). Now, since
the order < is compatible with the degree, i.e. the degree function on monomials is non-
decreasing, it follows that deg (Im (h)) is minimal among all the deg(m) with m € supp (h).
This exactly means that deg (Im (h)) = val (h), hence the result. d

To end this subsection, we will prove Proposition 17. For that purpose, we will
require the following lemma:

Lemma 16 (Artin-Tate [23]) Let K be a commutative Noetherian ring and let Ag C A be
two commutative K-algebras. If A is finitely generated as a K-algebra and if A is a finitely
generated Ag-module, then Ag is finitely generated as a K-algebra.

Now, using previous results we prove the following proposition.

Proposition 17 Let (K, m) be a complete local equicharacteristic Noetherian ring which has
a positive Krull dimension. Let k := K/m be its residue field. Then, K is not finitely generated
as a K-algebra, where the action of k is defined via Statement 1 of Theorem 12.

Proof By Theorem 12 statement number 4, there exists a sub-x-algebra Kg of K isomorphic
to a k-algebra of formal power series in finitely many variables in such a way that K is
actually a finitely generated Kg-module. However, by Proposition 11, Ky cannot be finitely
generated as a k-algebra. Hence, by contrapositive of Lemma 16, we conclude that K cannot
be finitely generated as a rk-algebra. O

A consequence of Proposition 17 is that, if we were to use Grobner bases methods
to compute in a complete local equicharacteristic Noetherian ring, we would have to
work on a polynomial ring with infinitely many variables, for which many essential
results of Grobner bases in finitely many variables fail to translate, especially when it
comes to effectiveness. This is why standard bases are a useful alternative tool.
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It follows from Proposition 9 and the fact that I(x) is the unique maximal ideal
of the local ring K[[x]] with which we defined the topology that any ideal in K[[x]] is
topologically closed for the topology induced by the metric §.

2 Topological rewriting

2.1 Basic notions and results

In this subsection, we introduce the basics of topological rewriting theory as originally
presented in [13]. It is a generalisation of classical rewriting theory in which we study
the reduction relation with respect to a topology on the base set.

Definition 18 (Topological rewriting system) An (abstract) topological rewriting system is
the data of (X, 7, — ) where (X, 7) is a topological space and — 1is a binary relation on X
called the base rewriting or one-step reduction relation.

As for the classical setting, we study the system not only through the base relation
but also via super-relations of the base relation. For instance, in the classical context,
we take interest in the transitive reflexive closure of the base relation, which we denote
by - . This relation describes a finite sequence of elementary computations. In topo-
logical rewriting systems, we investigate a more general kind of relation, namely the
topological rewriting relation as defined thereafter.

Definition 19 Let (X,7, — ) be a topological rewriting system. The topological rewriting

relation of that system, denoted —@, is defined as the topological closure of the relation _i>
viewed as a subspace of X x X equipped with the product topology T}?S X T, where T%IS is
the discrete topology on X.

Before noticing that this is indeed a generalisation of classical abstract rewriting
systems, we will characterise in the following proposition that two elements a,b € X
are related through that topological rewriting relation as a —©b if, and only if, a
rewrites in finitely many steps arbitrarily close to b (in the sense of the topology 7),
i.e. there are finite sequences of elementary computations starting at a that come
arbitrarily close to b.

Proposition 20 Let (X, 7, — ) be a topological rewriting system. Then, for all a,b € X, we
have a —©b if, and only if, for all neighbourhoods U of b in (X, T), there exists ¢ € U such

that a = c.

Proof Let X2 be the topological space X x X endowed with the product topology T;l(is X T.

Suppose (a,b) is in the closure of 5 when viewed as a subset of X2. Let U be a
neighbourhood of b in (X, 7). Then {a} x U is a neighbourhood of (a,b) in X2 and therefore,

there exists (a,c) € {a} x U such that a = c.
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Conversely, assume that for all neighbourhoods U of b in (X, 7) we have ¢ € U such that
it satisfies a - c. But, by definition of the product space, for any neighbourhood V of (a, b)
in X2, there exist a neighbourhood W of a in (X, T‘g(is) and a neighbourhood U of b in (X, 7)
such that they satisfy the relation W x U C V. Now, by assumption, there exists ¢ € U such

that @ = ¢ which means exactly that (a,b) is in the topological closure of —+ when viewed
as a subset of %27 since a € W. O

Remark 21 Note how —~5 is always a subrelation of —@. Now, conversely, notice that, when
we consider 7 := 7'31(‘5, it follows from Proposition 20 that the relation —& associated to

the topological rewriting system (X s, ) is exactly equal to > as binary relations.
In that sense, the topological rewriting systems are generalisations of abstract rewriting
systems because most of the subsequent definitions in topological rewriting theory turn out
to translate back to well-known properties of classical rewriting theory when considering the
discrete topology.

The notion of normal forms remains the same as in the classical setting.

Definition 22 (Normal form) Let (X, 7, — ) be a topological rewriting system. Any a € X
is called a normal form of the system if {b € X |a — b} = 0.

It is possible to characterise normal forms in terms of the topological rewriting
relation when we allow ourselves to assume a property on the underlying topological
space. Recall that a T1-space is a topological space (X, 7) such that for all z € X, the
intersection of all neighbourhoods of z in (X, 7) is exactly equal to the singleton {z}.

Lemma 23 Let (X, 7, — ) be a topological rewriting system.

1. Assume that (X, 1) is a T1-space. Then, for any normal form a of the system and
forallbe X, if a —©0b then b = a.

2. Assume that — is anti-reflexive and let a € X. If, for allb € X such that a —©b
we have b = a, then a is a normal form for the system.

Proof For statement number 1, assume (X, 7) is a T}-space and let a be a normal form and
consider b € X such that a —=®b. Then, by Proposition 20, for all neighbourhoods U of b for
the topology T there exists ¢ € U such that a = ¢. Now, since a is a normal form, ¢ = a. In
other words, a is contained in all neighbourhoods of b. Finally, since (X, 7) is a T}-space by
assumption, it follows that b = a.

For statement number 2, assume —> anti-reflexive and let a € X be an element such
that {b € X |a —®b} = {a}. By contradiction, assume there exists b € X such that a — b.
Since — is a subrelation of —®, we have a —©b. By assumption, it follows that b = a,
hence a — a, which contradicts the anti-reflexivity. O

One of the goals of topological rewriting theory is to study systems where classical
confluence fails to be strictly verified, as well as systems which are not terminating
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(a.k.a. strongly normalising). However, it is still useful to consider systems in which a
normal form can be reached through a super-relation of — | starting at any element
of the base space. This is the purpose of the following definition.

Definition 24 Let (X, 7, — ) be a topological rewriting system and let ~+ be a subrelation
of —@. Denote by - the transitive reflexive closure of —+ . We say that the system is
normalising with respect to -~ if, for all @ € X there exists a normal form b of the system
such that a %+ b, in which case we say “b is a normal form of a reached by -+ ”.

Rewriting theory is especially concerned with the existence and uniqueness of nor-
mal forms of arbitrary elements of the base space as reached by a certain super-relation
of the base rewriting relation. Definition 24 gives the existence and we now give three
definitions related to the uniqueness of normal forms.

Definition 25 Let (X, 7, — ) be a topological rewriting system and let ~ be a subrelation

of —©®. Let -5 be the transitive reflexive closure of ~ and <% the equivalence relation

generated by —» . We say that the system:

1. has the normal form property with respect to —~- if, for all @ € X and any normal
form b of the system such that a <+ b, then a -+ b.

2. has the unique normal form property with respect to —~= if, for all normal forms a
and b of the system such that a <+ b, then a = b.

3. has unique normal forms reached by —~ if, for all @ € X and any normal forms b
and c of the system such that a <+ b and a <% ¢, then b = c.

It turns out that, under a specific normalisation assumption and over a Tj-space,
these three properties are equivalent. This is the content of the following proposition.

Proposition 26 Let (X,7, — ) be a topological rewriting system and let -~ be a
subrelation of — . Consider all the definitions with respect to ~+ . We then have:

1. The unique normal form property implies that the system has unique normal forms
reached by -~ .

2. If (X,7) is a Ty-space and if —© is transitive, then the normal form property
implies the unique normal form property.

3. If the system is normalising, then the unique mnormal form property implies the
normal form property.

4. If (X, 7) is a T1-space and if the system is normalising, then, when the system has
unique normal forms reached by -~ , it has the unique normal form property.

Proof Statements 1 and 2 are straightforward with what precedes.
For statement 3, let a € X and b be a normal form of the system such that a <% b. By
normalisation hypothesis, there exists a normal form ¢ of the system such that a -+ ¢. Hence,
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it follows that ¢ < b where ¢ and b are normal forms. Hence, by assumption, it follows that
we have b = ¢ and, thus, a <% b, the desired result.

For statement 4, let @ and b be normal forms of the system such that a < b. Denote
by <~ and <% the opposite relations of —~+ and <% respectively. If we let «+ be the

symmetric closure of —+ , the assertion a <+ b exactly means that there exists a finite tuple
of elements (c1,---,¢;) € X*, for £ € N, such that:

A $FCLe>Co e o e cp e b
Let us call a “valley” in a sequence cj ¢ cg ¢ -+ 4> ¢y any index ¢ € {2,---,£ — 1}
such that c;—1 ~+ ¢; ¢~ ciy1.
Let us show that, for any ¢ € N and any tuple (c1,---,¢p) € X! such that:
A4~ CL P Co 4 oo ey~ b
which contains v € N\ {0} valleys, there exists £ € N and (dy,---,dp) € X" such that:
a$~dyp > do e o0 e dp > b

which contains v — 1 valleys.

Indeed, if there are v > 1 valleys in the first sequence, there is a right-most one, by which
we mean, the biggest index i € {2,---,£ — 1} which is a valley. In other words, we have the
following diagram:

Ci—1 ™7 Cj & Cig] £ Cig2 & w00 - Cj ™7 Gl ™t —~% cp =+ b,
for a unique j € {i +2,---,£}.
By normalisation hypothesis, there exists a normal form d for the system that satisfies
the relation ¢; <%+ d. Note how we are thus in the following situation:
C;—1 43~>d<fvcj15~>b.
By assumption of unique normal forms reached by —~~ , it follows that b = d. Thus, there
exist £’ € N and (di—&-k)OSng“ such that ¢;_1 ~» d; ~> dj41 ~> -+ ~>djppr ~+d=0.

It then suffices to define £ := i+ ¢ and dj, := ¢;, for all k € {1,---,4 — 1} and it follows
that the sequence:

Qé~dy e do s o e dim ~>di ~>dipr ~> o > djper =dp b

contains v — 1 valleys.
Now, since —~+ is a subrelation of —&, for all ¢ € X such that a < ¢, we have:

a—®c if c-»ais false. (2)

However, by hypothesis, the space (X, 7) is a T1-space, and thus, by Lemma 23 and since a
is a normal form, it follows that (2) yields the following:

c=a if c¢— ais false.

Similarly, for any ¢ € X such that c «+ b, we have ¢ = b if ¢ ~» b is false. Utilising the
contrapositive, this means that, for any sequence and ¢ > 1:

QY CLer e oo e cp ey b

there exist ig,41 € {1, -, £} such that ig < i1:

@ &~ Cjy £ Cijgf1 €% Cjpp2 €% <o e Cj 1 &3 ¢y~ b
Therefore, since a <+ b, there necessarily exist £ € N and a tuple (c1,- -+ cp) € X! such
that:
A4~ CL &> Co 4> o0 o> cp > b
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which, moreover, contains no valley, thanks to the process given earlier. This means that
there exists ¢ € {1, -, ¢} verifying:

G4~ C] 4~ CQ 4~ o - Cj > Cijq] = o > g~ b,
At this point, it suffices to use the assumption of Definition 25-3 to conclude that a = b since
the above sequence implies ¢; <% a and ¢; < b. O

We now introduce two different notions of confluence for topological rewriting
systems, which are exactly the classical confluence when considering the discrete
topology.

Definition 27 (Topological confluence) Let (X, 7, — ) be a topological rewriting system.
We say that the system is:

1. finitary topologically confluent if, for all a,b,c € X such that a = b and a > c,
then there exists d € X such that b -©d and ¢ -®d. In diagrams:

a
b c

2. infinitary topologically confluent if, for all a,b,c € X such that a -®b and a ¢,
then there exists d € X such that b -©d and ¢ -®d. In diagrams:

a
b®/ \®c

Remark 28 Since - is a subrelation of —®, it is clear that infinitary topological conflu-
ence implies finitary topological confluence of the system. See [17, Examples 4.1.3, 4.1.4] for
counter-examples of the converse implication.

2.2 Attractivity of normal forms in metric spaces

We described in Subsection 2.1 the basic definitions of topological rewriting theory,
including the notion of normal forms of a system. As we will see in Subsection 3.1, our
primary example of a non-discrete topological rewriting system, based on formal power
series, enjoys the property that the distance between any arbitrary starting formal
power series f and any normal form of the system will always be greater or equal to
the distance between any of the successors of f and the considered normal form. In
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other words, rewriting cannot take us further away from any normal forms than we
already were. Intuitively, this property seems to describe a certain kind of attractivity
of normal forms; we formalise that concept in terms of topological rewriting systems
for which the underlying space is a metric space.

Definition 29 Let (X, 74, — ) be a topological rewriting system where (X, 74) is the topo-
logical space induced by a metric space (X, d). We say that the system has globally attractive
normal forms if, for any normal form c of the system and any a,b € X such that a -®b, we
have d(b,¢) < d(a,c).

Remark 30 Note how this is equivalent to saying:
if a — b, then d(b,c) < d(a,c), for any a,b € X and any normal form c. (3)

Indeed, the necessity is immediate since — is a subrelation of —©. Now, assume (3).
Consider a,b € X such that a —©b and let ¢ be a normal form of the system. First, we show
that for any € € Ry, there exists d € X such that d(d,b) < e and d(d,c) < d(a,c): since
we have a b and the open ball B¢ (b) centered on b of radius ¢ is a neighbourhood of b,

there exists de € Be(b) such that @ = de. Decomposing that transitive reflexive relation into
a sequence of one-step reduction relations, we obtain, by induction and by (3), the following
inequality d(de, c) < d(a,c). Hence, for any € € R~ we have:

d(b,c) < d(b,de) + d(de, ) < e+d(a,c).

Making ¢ tend towards 0 we obtain the desired result: d(b,c) < d(a,c).

In the next subsection, we will use this newly-defined property to prove that, under
certain assumptions, finitary topological confluence implies the normal form property
with respect to any subrelation of —&.

2.3 When finitary topological confluence implies uniqueness of
normal forms

Throughout this subsection, fix (X, 74, — ) a topological rewriting system where the

underlying topological space (X, 74) is induced by a metric space (X,d) and ~+ a

subrelation of —@. Denote as usual %+ the transitive reflexive closure of —~ .
The main theorem of the current subsection is stated as follows:

Theorem 31 Assume the following properties:

1. The relation —& is transitive.
2. The system is normalising with respect to -~ .
3. The system has globally attractive normal forms.

Then, if the system is finitary topologically confluent, then it has the unique normal form
property with respect to —~ .
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Proof Since (X, 74) is a metrisable space, it is Hausdorff and hence a Tj-space as well. With
that in mind and using Assumption 2, by Proposition 26-4, it suffices to show that the system
has unique normal forms reached by -+ (Definition 25-3) to prove our theorem. Thus,
consider z € X and a, @’ be two normal forms such that <+ o and = % o/. Our objective
is a = o, let us prove it by showing that d(a, @’) is bounded from above by a quantity that
converges to 0. Since —~+ is a subrelation of —& and by Assumption 1 that latter relation is
transitive, the relation % is a subrelation of —© as well. Hence, r ©« and x —a. Now,
by Proposition 20, since the open balls B,(a) and B,(a’) of radius p € R and centered at
a and o are neighbourhoods of a and o respectively, there exists (y,y") € Bp(a) x Bp(a')
such that =+ y and = %+ 3’. By the finitary topological confluence hypothesis, it follows
that there exists z € X such that y -©z and 3y’ —® z. Now, by Assumption 3, we have the
inequalities d(z, @) < d(y, a) and d(z,a’) < d(y/, @’). Therefore, we have:

d(a, ') < d(a,z) +d(z,a’) < d(y,e) +d(y,a) < 2p.

Hence, making p tend towards 0 we obtain a = o/, the desired result. O

For our purposes of Subsection 3.3, we will require the following corollary:

Corollary 32 Under the same Assumptions 1,2,3 of Theorem 31, if the system is finitary
topologically confluent, then it has the normal form property with respect to the relation —~ .

Proof This is a direct consequence of Theorem 31 and Statement 3 of Proposition 26. O

3 Characterisations of standard bases in formal
power series ideals

In this section, we will first recall in Subsection 3.1 how rewriting with respect to an
ideal of formal power series works. This is essentially the same process as multivariate
polynomial reduction but with respect to the opposite order of an admissible monomial
order. We will also prove some rewriting-theoretic properties of the induced system.
Then, in Subsection 3.2, we will introduce the language which has originally been used
to characterise standard bases [24], namely standard representations and Hironaka
remainder. Finally, in Subsection 3.3, we will extend those previous characterisations
by adding some equivalent statements in terms of topological rewriting theory. In par-
ticular, we will recover the result of [17] stating that finitary and infinitary topological
confluences are equivalent for formal power series as well as the result of [13] charac-
terising standard bases with finitary topological confluence (called d-confluence in that
paper). Moreover, it will be made clear that the congruence relation modulo the ideal
is nothing else than the equivalence relation generated by the topological rewriting
relation induced by the topological rewriting system from Subsection 3.1.
Throughout Subsections 3.1-3.2-3.3, K is a (commutative) field of arbitrary char-
acteristic, n is a positive integer,z1, - - -, x, are distinct indeterminates and, as defined
in Subsection 1.2, denote by [z1, - - -, ] (or [x] for short) the commutative free monoid
generated by {z1,---, .} and by K[[z1, - - -, z,]] (or K[[x]] for short) the K-algebra of
formal power series. Consider also a fixed admissible monomial order < on [x]. Recall
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from Subsection 1.2, that K[[x]] is a complete local equicharacteristic Noetherian ring
whose I(x)-adic topology is metrisable by the metric § defined in (1). In particular,
the pair (K][[x]],d) is a complete metric space. Let 75 be the induced topology by the
metric 0. Finally, fix a set R := {s1,---, s} C K[[x]]\ {0} of exactly r non-zero formal
power series, where r is a non-negative integer and denote by I(R) the ideal in K][[x]]
generated by R.

3.1 Rewriting on formal power series

Define the following binary relation: for f,g € K][[x]], we write f — g if there exist a
monomial M € supp (f), an index ¢ € {1,---,r} and m € [x] such that M = m-1m (s;)

and: (1)
g=1f- lc (37,) ms;.

Notice how that means that g = (f — (f | M) M) + (terms > M). In other words,
f and g have the same coefficients for any monomial that is strictly smaller than M,
and the coefficient for M in g is necessarily zero.

The relation — thus depends on R and <. We can now consider the topologi-
cal rewriting system X5 := (K|[[x]],75, — ) and, therefore, the topological rewriting
relation (Definition 19) of that system that we will denote —. It is clear that nor-
mal forms (Definition 22) of the system X5 are exactly the formal power series f such
that no monomial in supp (f) is a multiple of a monomial of the form lm (s;) for any
index ¢ € {1,---,r}. Denote by NF (X3) the set of normal forms of the system. Let us
characterise the topological rewriting relation in terms of converging sequences.

Lemma 33 For any f, g € K[[x]], we have:

5 hy Vk € N,

f—©g = I(hi)ken € K[x)Y, {1‘ e —
im0 b = g-

Proof The right-to-left direction is trivial according to Proposition 20. Now, consider the
countable fundamental system of neighbourhoods of g defined as (By-«(9)) ey, Where the

notation By« (g) is the open ball for the metric & of radius 27 % centered at g. Then, if f —©g,

there exists, for each k € N, at least one hp € By—«(g) such that f > hy. Now, by the
axiom of choice, it suffices to make arbitrary choices of such h; for each & € N to construct
a sequence that satisfies the right-hand side of the equivalence of the lemma. O

Remark 34 Note that this characterisation can be applied mutatis mutandis to any topo-
logical rewriting system whose underlying topological space is first-countable, that is to say,
every element of the space has a countable fundamental system of neighbourhoods.

Here is one important property of the system }If%:

Proposition 35 If the order < is compatible with the degree, then —& is transitive.
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Proof Let f,g,h € K[[x]]. We will proceed in three steps.

® First, we will show that if f —© ¢ — h, then f —©h.

® Second, it will follow that if f —©g = h, then f —©h.

® Finally, we will use that intermediate result to prove that, if f —© g —© h, we indeed
have f —® h, hence —© is transitive.

Thus, assume firstly that f —©g — h. By definition of g — h, there exist M € supp (g),

an index ¢ € {1,---,7} and a monomial m € [x] such that M = m -1m (s;) and:
(9| M)
h=g— .
7 e

From that equality, it follows that Im (¢ — h) = M. Let us use Proposition 20 to show that
f —®h. Let U be an open neighbourhood of h. If g is in U, then there exists A’ € U such
that f 5 h' since f —©g, Otherwise, assume that g ¢ U. Therefore, there exists Ny € N
such that B,—ny; (h) is an open ball contained in U and, thus, does not contain g. It follows
from Proposition 15, since the order is, by hypothesis, compatible with the degree, that
deg (Im (g — h)) = deg(M) < Ny. By Lemma 33, there exists a sequence (hg)rey such

that f = hy for all k € N and limy_, o hy = g. It follows that there exists Ky, € N
verifying § (h Ky g) < 27Nu _ Since the order is compatible with the degree, we obtain by
Proposition 15 again:

deg (lm (g — hKNU)) > Ny > deg(M) = deg(lm (g — h)).
By compatibility with the degree, we obtain lm (g — hKNU) > lm (g — h) and, therefore,
<g — hKNU ‘ M> = 0, thus, <hKNU ’ M> = (g| M) # 0. We can therefore define:

Wo=nh <hKNU M>

= KNU — Wmsz

which by construction verifies h Kny — h'. Now we compute:

h—h =h—h LD

—h=h= iy, lc (s;) i
(g M)

=(n ) —p

(n Sy mss) o,

=g — h’KNU .
Thus, trivially § (h, h’) =90 (g7 hKNU) <27 Nu, Hence, b’ € By-ny (h) C U. Moreover,
by construction, we have f % h Ky, — h'. Therefore, we did exhibit A’ € U, for U arbitrary

open neighbourhood of h, such that f =+ h'. Thus, f -®h.

Secondly, by a simple induction argument, if f —©g =+ h, we have f —@h since we
decompose g = h into a finite sequence of one-step reduction relations and thus can apply
step-by-step the first result of the proof.

Thirdly, assume f —© g —®h. By Lemma 33, there exists a sequence (hy)xren such that,
for any k € N, g = hy, and limy_,o hy, = h. Let us show that f —-®h by proving that,
for any € € R, there exists b’ € Bs(h) such that f 2+ h' which enables to conclude via
Proposition 20. Let € € R . Then, since (hg)ren converges to h, there exists K. € N such
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that § (h,hg_) < §. Moreover, we have f —©g = hg.. Hence, by the second result of this
proof, we have f —® hy_. Using Lemma 33 again, there exists a sequence (h;q)k:EN such that,

for all k € N, f = h;c and limy_, h;c = hg_. By that latter convergence property, there
exists K. € N such that & (hKE»hIK/) < 5. Hence:

5 (h, h'Ké) <6(hhg)+0 (hKE,h}(;) < % + % _
Finally, by definition of the sequence (h;c)kGNv we have f = h's,. Which concludes the proof

that f —© h.
O

We will now prove a useful lemma.

Lemma 36 Let (fi)ren be a sequence in K[[x]]. Assume the monomial order < is compatible
with the degree. If, for allk € N, we have fi, — fiy1, then the sequence (fi)ren is convergent

Proof For each k € N, take the monomial M}, € supp (fx), the index i, € {1,---,7} and the

monomial my, € [x] such that My, =my, -1lm (s;,) and fr, — frr1 = %mksik.
ik

Firstly, let us show that, for any k1 € N, there exists k' > k1 such that My, < My, for all
E>k'. Let ky € N. Let M := My, and define Ly := {Mj, |k > k1, M}, < M}. Since there are
only finitely many indeterminates and the order is compatible with the degree, L is finite
because M is an upper bound. If L; is empty, then all the subsequent M; for k > ki are
then bigger than M which is the desired result. Assume thus Lj non-empty and denote by

MM .= min Ly and k := min{k: eN ’ k> ki, My = M{nin}- By definition, M{"™ is the
monomial in supp (fk2) that is reduced at step ks. Hence, it follows that <f;€ ’ M{nin> =0

for all k > ko since M{nin is the minimum of the monomials reduced after step k1. Then,
consider the subset Lo := {My |k > ko, M), < M} C Lj and notice how M{"™ ¢ Lo by
the previous discussion. Repeat this process ad infinitum replacing the index j by j + 1 in

the definitions of Lji1, MY} and kjio. Notice that, at each step j, we have Lji1 C L;

because M]I-nin ¢ Lji1. But since Ly is finite, there necessarily exists j > 1 such that we
have Ljy1 := {Mj, | k > kjy1, M}, < My, } = 0. Finally, this implies that My, ¢ ¢ L1, and
thus, My, ;¢ > My, for all £ > 1.

Now, let D € N. Since the order is compatible with the degree and using the previous
part of this proof, the sequence (deg(My))ren is eventually bigger than D, i.e., there exists
a rank kp € N such that deg(My) > D for all kK > kp. But, a straightforward computation
shows that, for k1, ko € N with kp < k1 < ka:

deg (Im (fx, — fk,)) = min {deg(My) | k1 < k < ka} > D.

By compatibility with the degree, we use Proposition 15 to show that 6(fx,, fk,) < 2~ D
which in turn proves that (fi)ren is Cauchy. Now, since K[[x]] is complete as metric space,
it follows that the sequence (fy)ren does indeed converge to a limit in K[[x]]. |

Remark 87 Denote by — the reflexive closure of — , i.e., f — g if and only if f = g or
f — g. As sequences that are eventually stationary are Cauchy sequences in a trivial way, any
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sequence (fi)ren such that fr, = fry1 (and thus, fi, = fr41) for all k € N is convergent
in K[[x]], by Lemma 36.

Now, consider the following relation that we will call the topological rewriting with
chains relation:

ho=f
fr®g  when  3(hp)ren € KXY, { he = hagr VE € N,

hmk_w() hk =4g.

By Lemma 33, it is immediate that »© is a subrelation of —&, because, if two
elements are linked by a finite sequence of — , then they are related through — .
However, it is still an open question if @ is actually equal to —@ in the system X7;:
this is the content of the problem we call the chains conjecture.

Proposition 38 If the order < is compatible with the degree, then, for all f € K][x]],
there exists a normal form o € NF (%E) such that f ~® . In particular, the system %f% 18
normalising with respect to & .

Proof For any f € K[[x]], denote by Ry := {m-1m(s;) € supp (f)|m € [x],i € {1,---,r}}.
This is the set of reducible monomials in the support of f. Obviously, we have f € NF (%E)
if and only if Ry = 0. Let f € K[[x]]. Let us construct a sequence (hy)ren inductively as
follows. Start by setting hg := f. Now, let K € N and assume we constructed a sequence
ho = h1 = -+ = hg such that, for all k € {0,---, K — 1}, if neither hy nor hy ., are
normal forms, i.e. if we have Ry, # 0 # Rp, . ,, then min< Ry, < min< Ry, . If Ry, =0,
define all the subsequent terms of the sequence as hy := hy for all £ > 1. Now, assume
that Ry, # 0. Let Mg := min< Ry, . It exists since the order is admissible. Choose ix :=

min{i € {1,---,7}|Im € [x], Mg =m -1lm (s;)} and mg = hnjéik) Define:
iK
— (hi | Mk) _
hK+1 = hK I (SZ‘K) MK Sjy -

Notice how hx — hi 41 and, if Ry, # 0, then min< Ry, < min< Ry, because we
rewrote the smallest reducing monomial in supp (hg) and thus, (hg 1 | Mg) = 0 and every
new potential reducible monomial introduced by the rewriting process is necessarily bigger
than M.

In all cases, repeating this process ad infinitum yields a sequence (hy)ren that satisfies
the relations hg = f and hy, — hy1 for all k € N. Now, by compatibility with the degree we
can use Lemma 36 and Remark 37. Hence, denote the limit of (hg)ren by ¢ := limg_, o0 hg. By
definition, we have f @ g. Finally, notice how g is a normal form: indeed, if Ry # 0, say there
exists M :=m - lm (s;) € supp (g) for some m € [x] and i € {1,---,r} and let D := deg(M).
Since g is the limit of the sequence, there exists K € N such that we have 0 (hy, g) < 27 for
all k > K. By compatibility with the degree and Proposition 15, we obtain, for all kK > K,
Im (hy, — g) > M and hence (hy | M) = (g| M) # 0, so M € Ry, . But, since the monomial
order < is admissible and compatible with the degree and the fact that we have only finitely
many indeterminates, for any monomial m € [x], there are only finitely many monomials

22



that are smaller than m for <. However, by construction, the sequence (min< th)keN is
strictly increasing for <. Now, since we saw that our assumption entails that, for all & > K,
we have M € Ry, and, thus, min< Ry, < M, this would mean that there are infinitely many
monomial smaller than M for <, because the sequence (min> th)keN is strictly increasing
but bounded from above by M. This is a contradiction, hence g is a normal form. O

To conclude this section, we will prove, as we previously said, that the system f{ﬁ
has globally attractive normal forms (Definition 29) when the order is compatible with
the degree.

Proposition 39 If the order < is compatible with the degree, the system %f% has globally
attractive normal forms.

Proof Let f,g € K[[x]] and o € NF (%E) By Remark 30, it suffices to show that, if f — g,
then (g, @) < 6(f, a). But, by definition, if f — g, there exists M € supp (f), i € {1,---, 7}
and m € [x] such that M = m -1m (s;) and:

AL

le (si)

If g = «, the result is trivial since §(g,a) = 0. Assume thus g # «. Then we first want
to show that Im (g — @) > Im (f — «). Indeed, let m’ € [x] with m’ < Im (f — «), then, by
definition of leading monomial, <f ’ m’> = <a | m’>. Hence, if m’ € supp (f), it is irreducible.
By contrapositive, we deduce that Im (f — «) < M, since M is reducible and in supp (f) by
definition. But, since M is the reduced monomial in the rewrite step f — g, it follows that,
for all m’ < M, we have <g | m'> = <f ‘ m'>. If we impose furthermore that m’ < Im (f — «),

g=1f-

we get <g -« ‘ m'> =(f—-«a m/> = 0, which is what we wanted to first prove. Now, since
the order is assumed to be compatible with the degree, we can use Proposition 15 to conclude
that 6(g, @) < o(f, ). O

3.2 Standard representations

In this subsection, we present the language of standard representations in which
standard bases were originally characterised.

Definition 40 Let f € K[[x]] \ {0}. We say that f admits a standard representation with
respect to R and < if there exists a r-tuple (q1,---,¢r) € K[[x]]" that satisfies the following
two conditions:

1. The g¢;’s are cofactor coefficients for f with respect to R, i.e.:

T
f= Z qiSi-
i=1
2. There are no cancellations of the least leading terms of the g;s;’s, i.e.:

lm (f) = min {lm (g;s:) |1 < i < 7,¢; # 0} .
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Remark 41 Tt is evident from the definition that any non-zero formal power series f that
admits a standard representation with respect to R and < is in the ideal I(R) and has a
leading monomial Im (f) which is reducible in the system %f%. Indeed, choose arbitrarily
among the rules in R that reduce the leading monomial of f for the opposite order of <, i.e.
choose any ig € {i € {1,---,7}|¢; #0,lm (g;8;) = 1lm (f)}, then:

Im (f) = 1m (gs,S4,) = Im (gi,) - Im (s4,) -

Tt is known from HIRONAKA’s theorem (see for instance [24, Corollary 2.2]) that R
is a standard basis of I(R) for < if, and only if, every non-zero f in I(R) has a standard
representation with respect to R and <. We shall recover that result in Subsection 3.3,
for the case of an order compatible with the degree, using the following proposition.

Proposition 42 Assume the order < is compatible with the degree. If f € K[[x]] \ {0} is
such that f =00, then f admits a standard representation with respect to R and <.

Proof By definition of f ~©0, there exists a sequence (hy)ren in K[[x]] such that hg = f,
for any k € N, we have hj, — hg11 and finally, limg_, o by, = 0. Let us construct inductively

an r-tuple of sequences (qgk)7 ’qf«k))keN in K[[x]].

The base step is to set q( ). = 0 for any ¢ € {1,---,7}. Now, suppose that we have
inductively constructed the sequences up to a rank k& € N such that they satisfy the following

condition: i,
k
F=he+> dMsi
i=1

If hyy = hg41, set q£k+1) = ql(k) for all ¢ € {1,---,7}. Otherwise, since hy — hyy1, we
necessarily have hy — hy41, which means, by definition, there exist My € supp (hg), an
index if, € {1,---,7} and a monomial my, € [x] such that My = my, - 1lm (s;,) and:

hy | M,
b1 = hg — %mksik‘
k

We then set q(k+1) = qgk) forall i€ {1,---,7}\ {ir} and:
(k+1) _ (k) (e | M)

qik = q'Lk IC (Slk)

Note how we then have:
T
k41 hi | M)
hk+1+2q§+)8i=hk+1+<qlk)+<’“' k) )52k+zq S
~ lc (si,,)
z;ézk

hi | My)
(hk+1 + <1 (‘ mk81k> + Zq(k)
=1
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Hence the induction hypothesis is verified for k41 and we can continue. Repeating this process

ad infinitum we obtain r sequences (qgk)) e which turn out to be Cauchy. Indeed, we notice
€

that, by compatibility with the degree, the sequence (deg(my))ren is always eventually bigger
than any positive integer because so is the sequence (deg(Mpy))ken of reduced monomials
in the Cauchy rewriting sequence (hy)gen. Since K[[x]] is a complete metric space, there
exists, for each i € {1,---,7}, qgoo) € K[[x]] such that limy_, ql(k) = qgoo). The induction
hypothesis allows us to write:

T T
. k
N 85 ST BRI ST
i=1 =1

Because f rewrites into 0 via chains, there exists a unique k € N such that My = Im (f).
It follows that qZ(:O) # 0 and lm (ql(:O)s“) = My, = lm(f). Hence, the qgoo)’s do exhibit a
standard representation for f with respect to R and <. O

3.3 The congruence relation modulo the ideal and the
characterisations of standard bases

In this subsection, we will show that the congruence relation modulo the ideal I(R) is
exactly the equivalence relation generated by &, when the order < is assumed to be
compatible with the degree. Under this assumption, we will also prove that this latter
equivalence relation is the same as the equivalence relation generated by —& .

Let =;(r) be the congruence relation modulo the ideal I(R), that is to say, we have
f =1(ry g if and only if f —g € I(R). Denote by @3- (resp. @) the equivalence
relation generated by +© (resp. —©): it is the transitive closure of the symmetric
closure, denoted @+ (resp. @), of the relation & (resp. —©).

We are first going to prove a few lemmas.

Lemma 43 ([17, Proposition 4.2.2]) For all f,g € K[[x]], if f —©g, then f =pr) g

This lemma is true only because, as we mentioned before, ideals of (commutative)
formal power series are topologically closed for the topology 7s.

Lemma 44 Assume the order < is compatible with the degree. Then, for all g € K[[x]] and
alli € {1,---,r}, we have gs; 0.

Proof Because the order is compatible with the degree and thus of order type w, we can
write the support of ¢ as a (potentially infinite) sequence (my)ren of monomials that is
strictly increasing for <. If that sequence is finite, then it is clear that, after rewriting each
monomial of the form M := my - 1lm (s;) € supp (¢s;) using the rule of index i, everything
will cancel out and we would have gs; = 0. It then suffices to decompose that relation in one-
step reduction relations and complete to infinity with zeros to end up with a sequence which
satisfies ¢s; 0. Otherwise, if the support is infinite, we define hg = ¢s; and, for each k € N:

L IC (hk) ]
hk+1 = hk o (Sz) mpS;.
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It is straightforward to see that, for every k € N, we have hy, — hy1, because we rewrite
the leading monomial of hj, which is of the form M}, := my - lm (s;), with rule of index 3.
Hence, by Lemma 36, the sequence (hy)recn converges. Moreover, it is clear that its limit is 0
because, the sequence (my)rcn being strictly increasing for < and the order < being assumed
to be compatible with the degree, it follows that the sequence (deg(My))ken is eventually
bigger than any positive integer and the sequence (M} )rcn is exactly the sequence of leading
monomials of the sequence (hg)ren- O

Lemma 45 (Translation lemma) Assume the order < is compatible with the degree. For all
formal power series f,g,h € K[[x]], if f — g = h, then there exist ', ¢’ € K[[x]] such that
h=f —¢, f>of and 04 .

Proof By definition, we have a sequence (hy)ren such that hg = f — g, limg_, o b = h and,
for all k € N, hy, — hj41. Construct inductively two sequences (f)ren and (gg)ren- First,
set fo := f and gg := ¢g. Assume the sequences are constructed up to a rank k € N such
that hy = fir — gg. If we have hy, = hjpyq, we set frpy1 := fr and giy1 := gg. Otherwise, if
hy # hy4+1, we necessarily have hy, — hy1, which means by definition, that there exist M}, €

supp (hy), an index i € {1,---,7} and a monomial my € [x]| such that My = my - Im (s;,)
and: (e | My
h — hy — k1R .
k+1 k lc (Slk) M Siy,
We then set:
(fx | M) (g | M)
= — ; d = — o
Jev1 = fk e (55, My Sy, an k1 1= 9k = 7 (5) mySiy,
Note how, then, by induction, we have:
(hy | M)
hpyr = hy — kLKL
k+1 k lc (Sik) MM Siy,
(f& — gr | M)
= (f—gp) = e g M)y
(f& — gr) o (5:,) kSiy
_ (fr| My) (g | Mg)
- (fk lc (SZk) kS Ik le (Slk) kSt
= fr41 = Ght1-

If My, ¢ supp (f%), then fr = fra1; otherwise, fr — frr1 by definition. Hence, fr, — frr1,
for any k € N. Same reasoning applies to the sequence (g )xen- Since the order is compatible
with the degree, we can use Lemma 36 to conclude that the sequences (fi)ren and (gr)ken
have limits; denote them by f’ and ¢’ respectively. It is then clear that f > f’ and g ~®¢’.
Finally, we conclude with:
h= lim hy = lim (fx —gr) = lim f, — lim g, = f —¢ .
k—o0 k— o0 k—o0 k—o0
O

We will actually require only a particular case of that lemma that we state
thereafter without the straightforward proof.

Corollary 46 Assume the order < is compatible with the degree. Let f,g € K[[x]]. If we
have f — g ~®0, then there exists h € K[[x]] such that f ~®h & g.
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Lemma 47 Assume the order < is compatible with the degree. Then =p(g) is a subrelation

of @%.

Proof First notice how for any subset R’ such that R C R’ C K[[x]]\ {0}, the relation > of
the system .'ff% is a subrelation of the topological rewriting with chains relation with respect
to R’ and <. Now, to get the proposition, it suffices to prove that for all = € N, if there
exist (q1,---,qr) € K[[x]]" such that f — g =>"I_; ¢;s;, then we have f @3- g. Let us now
prove this by induction on the number 7 of rules in R. The base step is when r = 0 which
means that f = ¢, and since @50 is an equivalence relation it is in particular reflexive;
the result follows. By induction, let » € N satisfy the induction hypothesis and consider
s € K[x]]\ (RU{0}), f.g € K[[x]] and (g, q1,- -~ qr) € K[[x]]""" such that:

T
g—F=as+ > ais;.
i=1

Let E@ be the topological rewriting with chains relation with respect to R U {s} and <

and denote by @%@ the equivalence relation generated by it. By Lemma 44, we have
qs ﬁ@o. Applying Corollary 46 to f := f and g := f + ¢s, we obtain a formal power series
h € K][[x]] such that f R@h and f+gs ﬁ?h' It follows that f@ﬁ@]“rqs. Now, notice that,
by definition, we have g — (f + ¢s) = >_:_; ¢;s;. Apply the induction hypothesis to obtain
@30 f + gs. But, »© is a subrelation of ﬁ@ (and hence, @3-® is also a subrelation of

@%@), SO g@%@f + qs@f{@f, therefore, f@f{@g, which is the desired result. O

We can finally prove that the congruence relation is characterised by the equiva-
lence relations generated by the topological rewriting relations.

Theorem 48 Assume the order < is compatible with the degree. Then =1(R) =0 and
@30 are equal.

Proof By Lemma 47, =I(R) is a subrelation of @3-©. Now, since > is a subrelation of

—6, it follows that @30 is also a subrelation of @=©. Finally, let us show that @0 is

a subrelation of =g, which will prove the theorem. Let f, g € K[[x]] such that ferog.
Decompose this into a finite sequence:

f&—OhNo—0he—0 - —0he—=~yg.

Using Lemma 43, it follows that, for any h,h’ € K[[x]], h@—®h’ implies h — k' € I(R).
Thus, by induction on the finite sequence above, we have:

f=9=(—h)+(h1—h2)+ -+ (he —g) € I(R).
From which we deduce f =;(g) g. d

The following theorem is where the main contributions of this paper can be found.
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Theorem 49 Assume the order < is compatible with the degree. Then the following
statements are equivalent:

. The system X3 is finitary topologically confluent.

. For all f € I(R), we have f —©0.

. For all f € I(R) \ {0}, f is reducible (i.e. not a normal form).

The set R is a standard basis of I(R) for <.

. For all f € I(R), we have f 0.

. Forall f € I(R)\ {0}, f admits a standard representation with respect to R and <.

. For all f € K[[x]], there is a unique o € NF (X3) such that f = o+ .._, ¢:s; for
some (Qh ] QT) € KHXHT

. The map from NF (X3;) to the quotient K[[x]]/I(R) which associates to any normal
form o € NF (X3) the equivalence class o + I(R) is bijective.

9. The system X3 is infinitary topologically confluent.

LD R W~

Co

Proof Most results use the compatibility with the degree assumption.

1. = 2.: Assuming finitary topological confluence of the system and thanks to Proposi-
tions 35, 38, and 39, we can use Corollary 32 of Theorem 31 to deduce that the normal form
property with respect to —© is verified. Now, let f € I(R). We thus have f =r(r) 0. By

Theorem 48, we have f @>©0. By the normal form property, since 0 is obviously a normal
form of the system, we have f —©0 since —& is transitive.

2. = 3.: Let f € I(R) \ {0}. We have by assumption f —©0. By contradiction, assume f
is a normal form. Then, by Lemma 23, f = 0 which contradicts the definition of f.

3. = 4.: Let f € I(R)\ {0}. Let us show that lm (f) is reducible. By contradiction,
suppose that there is no ¢ € {1,---,7} such that lm (s;) divides Im (f). By Proposition 38,
there exists o« € NF (%E) such that f »® «a. Since > is a subrelation of —©, we get f —© .
From Lemma 43, we get f —a € I(R). But, because f € I(R), we have a € I(R). Now, note
how if @ = 0, then f »®0, and therefore Im (f) is necessarily reducible. Otherwise, we would
have a € I(R) \ {0} and, by assumption, we would deduce that « is not a normal form; a
contradiction.

4. = 5.: Let f € I(R). Set fo := f. If fo = 0, it is trivial to see that f ~©0. Assume
thus fo # 0. Then lm (fy) is reducible. Rewrite it to obtain f;. We thus have fo — f1. If
f1 = 0, the result is clear. Otherwise, f1 € I(R) \ {0}. Therefore, its leading monomial is
once again reducible. Rewrite it to obtain fo, and go on like this forever or until we reach, for
some k € N, the identity fp = 0. If that is the case, then it is clear that f 0. Otherwise, if
there is never any k € N such that f; = 0 then we obtain an infinite sequence (fj)gen that
satisfies the relations fo = f and fi — fr4+1 for all £ € N. By Lemma 36, it follows that the
sequence converges. Moreover, since we always rewrite the leading monomial and since the
order is of type w, being compatible with the degree, we conclude that the limit is 0 which
exactly means that f »®0.

5. = 6.: This is exactly the content of Lemma 42.

6. = 7.: Let f € K[[x]]. If f is a normal form, the existence part of 7. is guaranteed.
Otherwise, by Proposition 38, there exists a € NF (.’{fz) different from f such that f »~®a.
Now, since 0 is a subrelation of —©, we obtain by Lemma 43 that f — « € I(R) \ {0}.
Hence, by assumption, f — o admits a standard representation with respect to R and <,
which yields the existence of the cofactors (g1, - -+, ¢r) € K[[x]]" such that f —a =3, ¢;s;.
Let us now show the uniqueness of o € NF (%E) satisfying that property. Suppose we have
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B € NF (x3) different from a and (g7, -, ¢-) € K[[x]]" such that f = >"7_, ¢js; + 3. Then
a—B=>3"_1(¢qi—q;)s; € I(R)\{0}. By assumption, o — 3 admits a standard representation
with respect to R and <. Then, according to Remark 41, it follows that the leading monomial
of a — B is reducible. However, this would mean that, among « and (3, at least one of them
contains a reducible monomial in its support, a contradiction. Hence, a = .

7. = 8.: It is a rather straightforward reformulation.

8. = 9.: Let f,g,h € K[[x]] such that f —®g and f —®h. By Proposition 38, there exist
normal forms «, 3 € NF (X3) such that g »®« and h ~® . As +@ is a subrelation of @,
we obtain thus that:

@ g@&- f-0h -8

It is clear from Lemma 43 that o« — 8 = (e —g) + (9 — f) + (f — h) + (h — B) € I(R). Thus,
by assumption, a = 8. Hence, the system is infinitary topologically confluent, since we have:

®/ f \®
g \@ h
a=p.
9. = 1.: This is the content of Remark 28. O

Conclusion

In this paper, we demonstrated why Grobner bases fail to work for complete local
equicharacteristic Noetherian rings and we gave convenient rewriting-theoretic char-
acterisations of standard bases for ideals of formal power series, which enables to
compute in those rings. Further work in that field could focus on the establishment
of a “topologised” Newman’s lemma from the classical case. It would then in par-
ticular allow us to recover the analogous statement of the Buchberger criterion for
standard bases. Note however how the desired end result about that S-series crite-
rion has already been proven in [25], so it would once again be about having purely
rewriting-theoretic proofs of the already known results. On other perspectives, there
is still the open problem of the chains conjecture: given an admissible monomial order
< compatible with the degree and R a finite set of rewrite rules for formal power
series, are the relations —® and »© from the topological rewriting system X7 nec-
essarily equal? This is in general not true for R infinite. If the conjecture turns out
to be true, then the topological rewriting relation we work with in this paper would
be the analogous as the “strongly convergent transfinite reduction relation” of infini-
tary ¥ /A-term rewriting. This would mean that abstract topological rewriting theory
is indeed a theory encompassing both rewriting on formal power series and infinitary
term rewriting in computer science.
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